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Abstract. We present here a graphical approach to the Feenberg multiple-scattering expansion
and discuss examples of Hamiltonians with topological and substitutional disorder where the
path-contribution technique allows us to understand the effects of such disorder and generate
physically relevant approximations.

1. Introduction

The Feenberg renormalized perturbation forms one of the bedrocks of multiple-scattering
theory. The original formal proof offered by Feenberg was based on algebraic resummation.
We offer here an alternative justification based on the idea of path summations. The
geometric interpretation of such scattering terms was first proposed by Haydock [1] and
although a similar geometrical interpretation was used in several communications on
disordered systems [2], the striking beauty and simplicity of the method has not been
explored in the way it should have been. The visualization of contributions from walks on
a lattice is perhaps more immediately comprehensible than intricate algebraic resummations.
We shall use the ideas developed here to study how structures form in the density of states.
In particular, when the system contains either spatial or topological disorder and the usual
band-structure methods for crystals become inapplicable, the path-contribution technique
gives us an insight into the origin of structures in the density of states and helps us in
developing physically relevant approximations. We shall provide several examples of the
above.

2. Multiple-scattering theory

2.1. The Feenberg series

We shall choose a countable, orthogonal basis set{|i〉}. It is enough that the basis is
countable. The indexi is in general a composite index for an electron in a solid. For
example, it could denote{R, rα, `,m,ms}, whereR labels a particular unit cell,rα is the
position of a particular member of the basis within that cell and the remaining labels are
the usual spherical harmonic and spin quantum numbers. With respect to this basis the
Hamiltonian may be represented by the operator

H =
∑
i

εi |i〉〈i| +
∑
i

∑
j 6=i

tij |i〉〈j | =H0+H1. (1)
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The break-up of the Hamiltonian into an unscattered termH0 and a scattering term
H1 is not unique. It is our choice how we decide to partition the Hamiltonian. Usually
our choice ofH0 is the one for which the unperturbed resolventg(z) = (zI −H0)

−1 is
relatively easy to obtain exactly. For the above choice, sinceH0 is totally diagonal:

g(z) = 1

z− εi I.
Now, simple matrix algebra gives,

G(z) = g + gH1g + gH1gH1g + · · · (2)

This is the bare multiple-scattering series. The diagonal representation in the countable
basis gives,

Gii = gii +
∑
j 6=i

gii tij gjj tjigii + · · · +
∑
j 6=i

∑
k 6=j

. . .
∑
m6=n

gii tij gjj tjkgkk . . . tmigii + · · · . (3)

2.2. Graphical translation

With each member of the basis|i〉 we now associate avertex vi . The set of vertices
constitute anetwork. A connection between two verticesvi and vj is called alink `ij .
In case that the index simply refers to a cellR, the network is identical to the underlying
lattice made up of these unit cells. For the more general case the network is fully defined
by the geometrical connections between its vertices via its links.

Let us now define graphical terminology.
(i) A path is defined to be a sequence of vertices connected by links. The number of

links is defined to be thelength of a path. A path of lengthN between the verticesvi and
vj is denoted by

PNij = {vi, `ii , Vi1, `i1i2, vi2 . . . `iN−1j , vj }.
(ii) A closed path is a path whose starting and ending vertices are the same, e.g.PNii .
(iii) Vertices which are neither the starting nor the ending vertices on a path are called

the internal vertices.
(iv) A closed loose endedpath is defined as the sequence defining a closed path minus

the starting (ending) vertex. A closed loose ended path of lengthN will be denoted by
QN
ii = {`ii1, vi1, `i1i2, vi2, . . . `iN−1j }.

(v) A closed loose ended path fromvi to vi which does not visitvi again, i.e. none of
whose internal vertices isvi will be denoted bySNii .

(vi) The set of all paths of a particular kind will be denoted by the corresponding curly
letter. For example, the set of all closed paths of lengthN from vi back to vi will be
denoted byPNii .

(vii) The product of two pathsPNij = {vi`ii1vi1 . . . vj } andPMjk = {vj`jj1
. . . vk} is just

another path composed of these two:PN+Mik = {vi`ii1vi1 . . . vj `jj1
vj1 . . . vk}.

Note that since paths aresequences, this definition of product is not commutative.
Moreover, two paths are product compatible only if the endpoint of the first coincides with
the starting point of the second. We shall denote the product byPNij × PMjk = PN+Mik .

(viii) The product of two sets of pathsPNij andPMjk is the set of all possible products of

one path from the first set with one from the second. We denote this by :PNij �PMjk = PN+Mik .
(ix) Any path can be written as a product of its vertices, which are considered paths of

length zero,P 0
ii = vi and its links, which are considered as paths of length one,P 1

ij = `ij .
For example, taking the path described above :PNij = P 0

ii × P 1
ii1
× P 0

i1
× . . . P 0

jj .
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(ix) P0
ii = {vi} andPNii = P0

ii �QNii � P0
ii .

We may now introduce algebraic structure on these abstract graphical objects.
(i) The contribution of a vertexvi is defined to beκ(vi) = gii . The contribution of a

link `ij is defined asκ(`ij ) = tij .
(ii) The contribution of a product of objects is defined to thesimple productof their

contributions. Since a path can be written as an ordered product of its vertices and links, it
follows that the contribution of a path is a product of the contributions of its vertices and
links.

κ(PNij ) =
∏
k

κ(vk)
∏
ij

κ(`ij ).

(iii) The contribution of a set of paths is thesum of contributions of each path in the
set.

κ(PNij ) =
∑
PNij εPNij

κ(PNii ).

(iv) The contribution of theunion of two sets of paths is the sum of the contributions
of each set.

κ(PNij ∪ PMmn) = κ(PNij )+ κ(PMmn).
(v) The contribution of theproduct of two sets of paths is the product of the contribution

of each set of paths.
Having defined the algebra of paths, let us return our attention to equation (3). If we

can definePNii as the set of all closed paths from the vertexvi and back, and definePii as
the union of all such paths of all lengths from 1 to∞:

Pii = ∪∞N=1Pnii
then the Feenberg perturbation series can be written in a simple form

Gii(z) = κ(P0
ii )+ κ(Pii ). (4)

2.3. Decorations and self energy

Let us now closely examine various paths in the Feenberg series. They are all closed paths.
The first thing we do is to rewrite closed paths as a product of vertices and closed loose
ended pathsPNii = vi ×QN

ii × vi .
If we look at figure 1†we notice that all loose ended pathsQN

ii may visit the starting
(ending) verticesvi at most= N (mod) 2 times more. Ifp denotes the number of times
which a closed path visits the starting vertex, then figure 1 shows different paths with
different labelling byN andp. Note that

QN
ii = {`ii1Vii . . . `im1 i

}vi{`iim1+1vim1+1 . . . `im1+m2−1i}vi . . .
= sm1

ii × P 0
ii × Sm2

ii × P 0
ii × . . . Smpii

= Qp,N

ii .

† In figures 1–4 which illustrate various walks on the lattice, an arrow→ or← refers to the direction of the walk
on the lattice. A bond with two arrows→← refers to a part of the walk from the vertex at one end of the bond
to the other and back. The starting vertex of the walk is also clearly marked.
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Figure 1. Closed paths labelled by their lengthsN and the number of timesp it visits the initial
vertex internally.

Looking at the bottom of the figure 1 we see that,

Q
1,6
ii = S6

ii

Q
2,6
ii = S2

ii × P 0
ii × S4

ii

Q
2,6
ii = S3

ii × P 0
ii × S3

ii

Q
1,6
ii = S6

ii .

The network produced by the unscattering HamiltonianH0 is just a set of unlinked
vertices, sinceH0 is totally diagonal. We note from figure 1 that the closed loose ended
pathsQp,N

ii decorate or hang onto the vertices of that network. These decorations arise
entirely because of the scattering due toH1. They are thereforecentral to our study.

If we now group together all loose ended closed paths with the same value ofp and
call

Q̂pii = ∪∞N=2pQ
p,N

ii .

Comparing figures 1 and 2 we see that this regrouping takes care of all closed loose
ended paths starting and ending at the vertexvi .

Qii = ∪∞p=1 ∪∞N=2p Q
p,N

ii = ∪∞m=0Q̂
p

ii .

If we now examine the paths in figure 2 a little more carefully, we denote that any
path in the second row withp = 2 can be broken up into two paths from the top row with
p = 1. Similarly, any path withp = 3 in the bottom row can be broken up into three paths
from the top row withp = 1. The break-up structure is now evident:

Q̂pii = Q̂1
ii � P1

ii � Q̂1
ii . . .� Q̂1

ii (p − 1) times.
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Figure 2. Grouping of closed paths with the same value ofp to produce decorations of the
internal vertex.

It then follows from the above equation that,

Qii = ∪∞p=1Q̂1
ii � (P0

ii � Q̂1
ii )
p−1. (5)

So that,

Pii = P0
ii �Qii � P0

ii

= ∪∞p=1(P0
ii � Q̂1

ii )
p � P0

ii . (6)

Let us define the contributions,

κ(Q̂1
ii ) = 6i

κ(P0
ii ) = g.

(7)

Then from equation (6) taking contributions of either side we immediately obtain

κ(Pii ) =
∞∑
p=1

(g6i)
pg.

If we put this back into the expression of the Feenberg series we obtain

Gii(z) = g + g6ig + g6ig6ig + · · ·
= g + g6iGii(z).

This is theDyson equation. Sinceg is totally diagonal, it follows that,

Gii = 1

z− εi −6i(z) (8)
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where6i(z) is called theself-energy. The effect of the multiple scattering is torenormalize
the unscattered HamiltonianH0 to aneffectiveHamiltonianHeff = 6i(εi +6i)|i〉〈i|. This
effective Hamiltonian is not self-adjoint but nevertheless has exactly the same spectrum as
the full HamiltonianH.

A very simple example illustrates the effect of this self energy. IfH0 denotes the
Hamiltonian of a set on non-interacting atoms. The energy of theith electron is given by
εi . When the interactionH1 between the atoms is turned on, that is, when these atoms
bond to form the solid, the real part of the self-energy leads to a shift in the energy levels
of the electrons because of the bonding. The imaginary part leads to a broadening of the
sharp energy levels to form bands.

In the caseH0 is totally diagonal, the multiple scattering decorates only vertices.
However, if H0 has links as well, then the multiple scattering decorates both vertices
and links.

2.4. Renormalization of the multiple-scattering series

In this section we shall study the self-energy decoration and obtain a modified or
renormalized expression for its contribution. Let us look back at figure 2. Note that
the closed loose ended pathSNii , into which pathsQp,N

ii were broken up, do not visit the
vertexvi at all, but they may visit other verticesvj more than once. Let us start regrouping
paths again. In figure 1 the path labelledN = 4, p = 1 in the top row of the third column,
visits the next vertexvi1 twice. So do the paths labelledN = 5, p = 1 in the second
column of the second row andN = 6, p = 1 in the first column of the last row. Let us
group together such paths which visit the vertexvi1 once, twice and so on. This is shown
in figure 3.

Now, the loose ended closed paths that decorate the vertexvi1 are all paths of all lengths
which start and end atvi1, but never visit the vertexv1. This decoration may be written as

P0
vi1 ,vi1
+ P0

vi1 ,vi1
�Q(vi )vi1 ,vi1

� P0
vi1 ,vi1

= P (vi )vi1 ,vi1
.

The expressionQ(vi )vi1 ,vi1
is exactly similar toQii of equation (5), the only difference is

that the superscripted vertex is never visited. So that paths are counted on a network from
which the superscripted vertex has been removed. Exactly as in equation (5) this set of
paths can be broken up into a set of paths that visit the vertexvi1 only once (that is at the
beginning and end, but never inside):

Q(v1)
vi1 ,vi1

= ∪∞p=1Q̂1,(vi )
vi1 ,vi1
� (P 0

vi1 ,vi1
� Q̂1(v1)

vi1 ,vi1
)p−1.

Once we compare the above two equations, it becomes clear that the contribution of the
decoration is,

κ(P (v1)
vi1 ,vi1

) = G(i)
i1i1
. (9)

Thus the effect of the regrouping is to renormalize the contribution of the vertexvi1
from κ(v1i ) = gi1i1 to κ̂(vi1i1) = G(i)

i1i1
.

We go on to the next vertex in linevi2 and again regroup paths in exactly the same
way. The effect of this regrouping will be to renormalize the contribution of the vertex to
G
(i,i1)
i2i2

. As before, the superscripted vertices denote that the Green function is calculated
from the network in which the superscripted vertices are removed, so that no path can ever
visit them.

We now systematically go on regrouping vertex by vertex until all vertices are exhausted.
The final results may be summarized as follows.
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(1) Since in the regrouping procedure we have taken into account paths of all lengths
which visit every vertex as many times as possible, we have, in effect, taken care of all
possible paths on the network.

(2) After renormalization, the remaining paths never visit any of the internal vertices
more than once. Such paths are calledself-avoiding paths.

(3) The contribution of a vertex on a path is now entirely dependant on the
path, since it depends on all the preceding vertices. If we have a self-avoiding path
{v1, `12, v2, . . . , vr , `rr+1, vr+1 . . .}, then the renormalized contribution of therth vertex
is κ̂(vr) = G(1,2,...,r−1)

r,r .
(4) Every intermediate Green function

G(1,2,...,r−1)
rr = (z− εr −6(1,2,...,r−1)

r )−1

and the self-energies may be obtained by the same path contribution expression as (7) except
that the superscripted vertices are removed from the network while the calculation proceeds.

κ̂(Q̂(1,2,...,r−1)
rr ) = 6(1,2,...,r−1)

r .

This result with the modified definition of the contribution of vertices and the self-energy
in terms of self-avoiding paths is therenormalized Feenberg series.

Gii(z) = κ̂(P0
ii )+ κ̂(Pii ).

Figure 3. Grouping of the paths to illustrate decorations of internal vertices.
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Figure 4. Closed paths labelled by their lengthsN and their rangeR, as well as the number
of such paths possible on the square lattice. This illustrates that asN increases such paths are
dominated by those that wind round the starting vertex labelled by 1.

3. Applications of the geometric formulation

The geometric formulation put forward in the previous sections is mathematically appealing,
but the question always arises: does this geometric formulation have any applications
to problems of physics? We shall now discuss areas where the pathcounting procedure
has been utilized to give insight into the solution of the problem and interpretation of its
results. As mentioned earlier, such applications become important when the Hamiltonian
is either spatially or topologically random and the usual band-structure methods available
for translationally symmetric crystalline lattices become inapplicable. The path-counting
technique then allows us to set up physically appropriate approximations.

The exact Green function of any Hermitian Hamiltonian with a bounded spectrum of any
system, with or without disorder, must satisfy the so-called Herglotz analytic conditions. A
complex functionf (z) of a complex variablez is called Herglotz if (i) the singularities of the
function lie entirely on the realz-axis, (ii) the sign of the imaginary part off (z) is always
negative in the upper half of the complexz-plane and always positive in the lower half and
(iii) the real part off (z) varies as 1/z asz→∞ along the realz-axis. Physical constraint
of a real spectrum, a non-negative density of states and a bounded spectrum necessitates
these conditions. Any approximation therefore must also be such that the approximate
Green function also obeys these conditions. Haydock [1] has shown earlier that any path
contribution of the type discussed earlier satisfies these analytic conditions. Therefore, any
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approximation which is based on considering only a specific class of paths maintains the
Herglotz properties. We shall consider two specific examples of such applications.

3.1. Evolution of density of states structures related to paths

An example of a much more direct application of the graphical formalism occurs if we wish
to relate the structure in the density of states to specific paths on the lattice. The number
and shape of paths on the lattice is a property of the topology of the lattice. So, what
we wish to study here is the effect of the lattice topology on the shape and structures in
the density of states. In the case in which the lattice becomes topologically distorted and
paths of new shapes occur, the following discussion will allow us to choose the dominant
distorted paths to include in our approximation.

As an example let us take the square lattice, on which we define a tight-binding
Hamiltonian with one orbital per site

Hij =
∑
i

∑
jεN1

tij .

The equal diagonal elements taken to be zero by this choice of the energy origin and
Ni are the nearest neighbours of the vertexvi on the square lattice. These off-diagonal
elements can be chosen to be 1 with this choice of the energy scale.

The simplest approximation to the square lattice is the Cayley tree, shown in the top row
of figure 5. Both have the same number of nearest neighbours per site. What the Cayley
tree lacks as compared with the square lattice are closed self-avoiding loops starting from a
site and back. If we begin by neglecting the contribution of these self-avoiding loops, the
path contribution gives the following: (see the top row, second column of figure 5). Since
there are only four self-avoiding paths from the vertex 1 and back and all of these are of
length 2,

G11 = (z−61)
−1

61 =
4∑
k=1

κ(P 2
k )

= 4G(1)
22 .

The graph with the central site labelled 1 removed is shown on the extreme right in the
top row of figure 5. There are now only three closed, self-avoiding paths from 2 and back
and all are identical of length 2. At this stage we note that the graph with the vertex 1
removed and that with (1, 2) removed are identical (this is a specific feature of the Cayley
tree, which has no closed loops at all). This gives,

G
(1)
22 = 0
= (z−6)−1

6 = 30.

The above set of equations is closed and may be solved directly:

G11(E) =


(
E − 2i

√
12− E2

)
/(16− E2) if −√126 E

√
12

3/
(
E − 2

√
E2− 12

)
if |E| > 12.

The density of states is featureless and symmetric. The band width is around 7.32
instead of 8 as predicted from Bloch theorem based band structure. There is a signature
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Figure 5. (a) Showing different approximations to the square lattice.(top) The Cayley tree, the
four closed paths from the origin and back and the peripheral decorations. (second) A single
square immersed in the Cayley tree and break-up of the square path by successively removing
vertices on the path. (third) A small square lattice immersed in the Cayley tree and the different
closed loops included. (bottom) A Husimi cactus. (b) Break-up of the closed loops shown in
the third row of figure 5 by successively removing vertices on the path.

of neither the logarithmic van Hove singularity at the origin nor the two flanking kink
singularities which are characteristic of the density of states on square lattices. This is
shown in figure 6(i).

Note that in figures 6–8 thex-axes plot the energy scaled by the band width, the left-
hand edge chosen as the zero of energy. The density of states shown here are thus non-zero
in the range 06 E 6 1. They-axes show the density of the states, again scaled by its
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Figure 6. The density of states (states/atom-energy) where the energy is scaled by the band
width. (i) For the Cayley tree, (ii) for the single square immersed in the Cayley tree, (iii) for
the square piece immersed in the Cayley tree and (iv) for the Husimi cactus.

maximum value. Since we are primarily interested in the shape of the density of states and
structures in it related to the topology of the lattice, the scaled axes suffice. In more realistic
calculations thex-axes should be given in (say) Ryd and they-axes in states/atom-Ryd-spin.

The next smallest closed loop is the square shaped loop shown in the second row in
figure 5. Let us consider only one such loop and the contributions of all other closed loops
in the lattice are ignored. This means that the contribution of the decorations on the vertices
in the periphery are those of the Cayley tree. Now we still have four self-avoiding paths of
length 2 starting from 1 and back but, in addition, there are two closed loops of length 4.
These are the paths along the central square loop clockwise and anti-clockwise from 1 and
back. The second row of the second column shows that the graph with the vertex 1 omitted
resembles the old Cayley tree with the starting site removed, except that the site 4 along
the loop has one less link than in the tree (the link that was associated with the removed
vertex).

The contribution of the closed loop to the self-energy is

6(4) = G(1)
22G

(1,2)
33 G

(1,2,3)
44 .

Looking at the figure in the second column of the second row of figure 5 we obtain

G
(1)
22 =K3

n=1
1

z− 20−
G
(1,2)
33 =K2

n=1
1

z− 20−
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Figure 7. The density of states (states/atom-energy) where the energy is scaled by the band
width. These were obtained by the recursion on a square lattice. For (i) 20 (ii) 40 (iii) 60 and
(iv) 200 recursions.

G
(1,2,3)
44 = 1

20
.

The equations again form a closed set and we may solve for the various contributions.
We finally obtain

G11 = 1

z− 20 − 26(4)
.

The density of states is shown in figure 6(ii). Already with the inclusion of only one
square loop the incipient logarithmic van Hove singularity at the origin begins to show up.
So do singularities at the flanks of the density of states.

In our next stage of approximation we include a central patch of square lattice immersed
in a Cayley tree. This is shown in the first column of the third row in figure 5. We now have
to count all the self-avoiding paths from vertex 1 and back. from this figure we can identify
four classes: four walks of length 2P 2

11, eight square loops (clockwise and anticlockwise)
P 4

11; 16 rectangular loopsP 6
11 (clockwise and anticlockwise with bothx- andy-elongations)

and 16 L-shaped loopsP 8
11. All these walks are shown in the third row of figure 5 with

their weights.
The calculations of the self-energy also requiresG

(1)
22 andG(1,2)

33 . The graphs for these
calculations are shown in the inset.

The self-energy forG(1)
22 has contributions from one pathP 2

22, shown going towards
the right with a Cayley tree decorating its extremity. Its contribution is0. There are two
other paths of length 2: those going above and below vertex 2. Contribution of these
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Figure 8. (a) The density of states (states/atom-energy) where the energy is scaled by the band
width. These are for (i) three- (iv) four- (iii) five- and (iv) six-membered rings immersed in
the Cayley tree. (b) A distorted network showing distorted squares as well as triangular and
pentagonal rings. (c) The density of states (states/atom-energy) where the energy is scaled by
the band width. The full curve was calculated for a network with 62% square, 25% triangular
and 13% pentagonal rings immersed in the Cayley tree. For comparison we show the density of
states of the peice of square lattice immersed in the Cayley tree shown earlier (broken curve).

together gives 2G(1,2)
33 . These are also two square paths of length 8 whose contribution is

2G(1,2)
33 G

(1,2,3)
44 . . . G

(1,2,...,8)
99 .

The graph forG(1,2)
33 and the other subsequent Green functions all resemble the Cayley
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Figure 8. (Continued)

tree. The main one is shown in the inset to the right. The only difference is that the
decorations on alternate vertices are different in number to the full Cayley tree. This arises
because of the connection of these vertices to vertex 1 which has been removed.

Again this set forms a closed set of equations which can be solved. The resulting density
of states is shown in figure 6(iii). We note that the inclusion of a bigger chunk of square
lattice topology in the neighbourhood of the starting point has lead to a sharpening of the
van Hove singularities both at the centre and at the flanks of the density of states. These
structures seem therefore to be intrinsically related to the topology of the lattice and not to
the magnitude of the Hamiltonian matrix elements.

As a final illustration, we show the results of a Husimi cactus lattice. This lattice is
shown in the bottom row of figure 5. The Husimi cactus is a generalization of case (ii),
where the central square loop instead being decorated with Cayley trees at its extremities, are
decorated by other square loops. We thus take square-loop contributions infinitely far into
the lattice. However, the loops don’t intersect, so that the outward topology of the lattice
is approximated. Again the equations for the self-energy forms a closed set of equations
which can be obtained by looking at the contributions of the various paths shown in figure 5
bottom row.

The resulting density of states,

G11 = (z− 26)−1

6 = 2G(1)
22 + 2G(1)

22G
(1,2)
33 G

(1,2,3)
44

G
(1)
22 = (z−6 −G(1,2)

33 )−1

G
(1,2)
33 = (z−6 −G(1,2,3)

44 )−1

G
(1,2,3)
44 = (z−6)−1.

The resulting density of states is shown in figure 6(iv). Note that the logarithmic van
Hove singularity at the band centre is now almost evident from the figure, confirming that
this structure is related to the square-loop topology of the lattice.

We may now compare these densities with more accurate results obtained from the
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recursion method [3, 4]. These are shown in figures 7(i)–(iv). The termination of recursion
in (i)–(iv) is carried out after 20, 40, 60, and 400 steps. In the last calculation we have
reduced the rank of the space on which the recursion is carried out using the point-group
symmetries of the square lattice [5]. The growth of the central logarithmic van Hove
singularity with the inclusion of longer paths in the recursion shows up clearly, confirming
our results from simple path-contribution considerations. The singularities on the two flanks
of the density of states appear to be of a different kind, though. In the recursion (and exact
Bloch theorem considerations) the singularities appear as discontinuities in the derivative.
However, in the tree or cacti type of approximations these appear as integrable divergences.
The exact nature of these singularities therefore depend sensitively not on square loops
alone, but on the asymptotic topology of the lattice.

3.2. Examples on random networks

The example in the previous section was described in detail to show how fairly simple
considerations of the path-contribution idea developed in this communication can give us
extensive insight into the structures in the density of states. These are otherwise obtained
from very expensive computer calculations. The above discussion also leads the way for
us to model more complex situations, for example, calculations on random networks. If we
begin to randomly distort the perfectly square lattice of the previous example, but at the
same time make sure that the network still spans the space, we shall end up with the kind
of situation shown in figure 8(b). The shape of the network is usually relaxed to minimize
energy. Such continuous random networks have been cited in literature. Two new features
show up in the network. First, apart from the usual square loops we now have a proportion
of three- and five-membered loops as well. Second, although most sites are still four-fold
coordinated, a small proportion of sites miss a bond (e.g. three sites of the pentagonal ring
in figure 8(b)). These are the dangling bonds which give rise to localized states often in
the energy gaps.

The path-contribution method is then an ideal way of studying the effect of different
topologically distorted loops on the density of states. The procedure we follow is similar to
the previous section. The topology of the network in the immediate vicinity of the site to
be examined is considered as exactly as possible, while the far away part of the network is
approximated by tree or cacti containing at least the most important loops which contribute
to the structures in the density of states. We shall not repeat details of the mathematics, but
illustrate some of the results.

In figure 8(a) we show the local density-of-states structures which arise from three,
four, five and six-membered loops. The characteristic incipient van Hove singularity of the
square loops (shown in (ii)) is destroyed by the presence of odd-membered loops. These
new topological structures have a considerable effect on the spectral distribution and hence
on specific physical properties of the network. In figure 8(c) we show the total density of
states for the network shown in figure 8(b) in which roughly 62% of the loops are square,
but about 25% are triangular and 13% are pentagonal. We have modelled such a network
with a central random network immersed in a tree background. This is similar to the central
square network immersed in a tree background. The total density of states is compared in
the two cases. As mentioned before, van Hove singularity structures within the band are
broadened out and there is considerable redistribution of spectral weight within the band.

As the paths considered becomes longer and longer, the book-keeping of self-avoiding
paths become rapidly intractable. Although a brute-force numerical solution is an alternative
method, in trying to understand the data produced and analysing the effect of topology on
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the electronic spectra, it is always instructive to use the path-contribution technique to gain
insight first before reaching conclusions about numerical results. It is here that the method
proposed in this communication has importance.

4. Conclusion

We have given here a graphical reinterpretation of the renormalizing Feenberg perturbation
series. The path-counting technique brings out some of the earlier results in a transparent
form. This path-counting technique provides a powerful insight into how to generate
physically relevant approximations in situations where the underlying lattice is topologically
distorted and the usual band-structure methods on translationally symmetric lattices become
inapplicable. Similarly, in case of substitutional disorder, this technique in tandem with
augmented-space method, has been used earlier to generate analytic generalizations of the
single-site mean-field coherent potential approximations [6]. In such situations the path-
counting interpretation discussed here provides an invaluable technique.
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